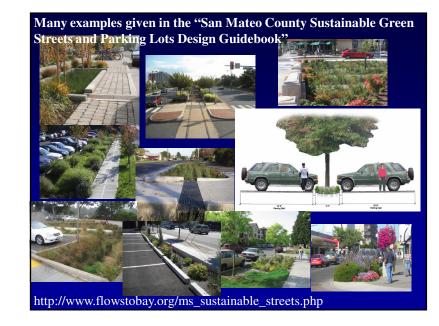
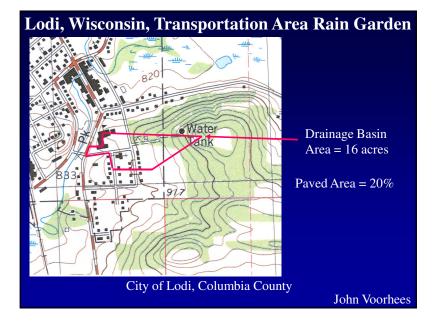
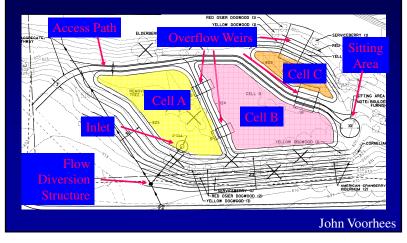


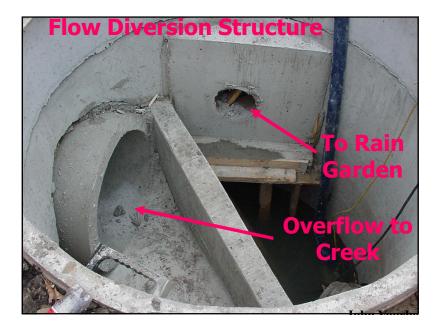
Robert Pitt, Ph.D., P.E., BCEE, D. WRE Cudworth Professor of Urban Water Systems Department of Civil, Construction, and Environmental Engineering University of Alabama Tuscaloosa, AL, USA 35487

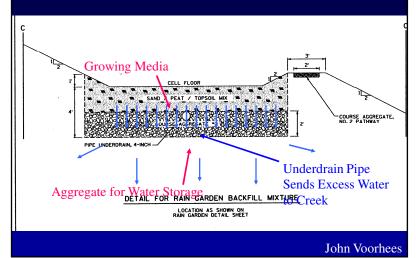
- Biofilters utilize an under-drain to capture stormwater after filtration in the soil/media mixture and discharge it back to the drainage system. Some of this water may be infiltrated, depending on soil conditions and lining. In Australia, they are commonly lined as they want the treated water discharged back to the receiving water for use as a downstream water supply. Surface overflows capture excessive water and direct that to the drainage system with little treatment.
- Bioretention devices are constructed without an underdrain and are designed to infiltrate most of the water, after filtering in the soil/media mixture. They also usually have a surface overflow.




Portland, Oregon, bioretention areas to capture and treat parking lot runoff.

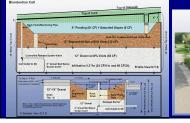




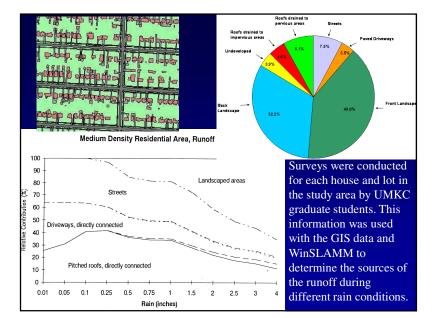


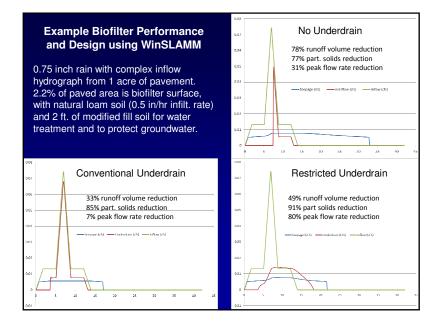
Lodi Rain Garden Features

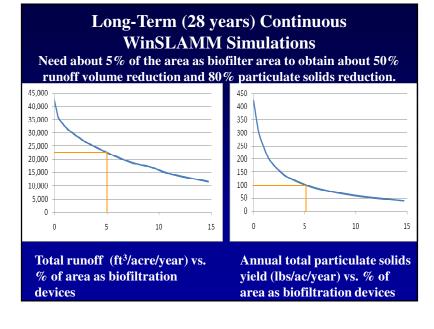
Lodi, WI, Rain Garden Costs			
Pipe Underdrain and Endwalls	\$700		
Flow Regulation Structure	\$3,000		
Plants	\$2,200		
Shrubs	\$450		
Backfill	\$11,600		
Excavation	\$2,200		
Select Crushed Material/Riprap	\$3,850		
Storm Sewer and Manholes	\$3,500		
Total \$4.70/sf	\$27,500		
	John Voo		

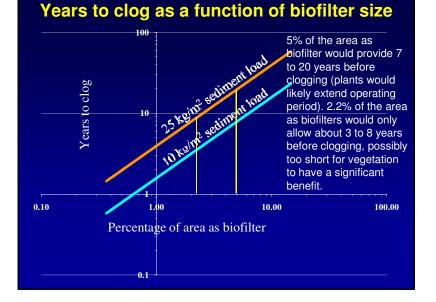


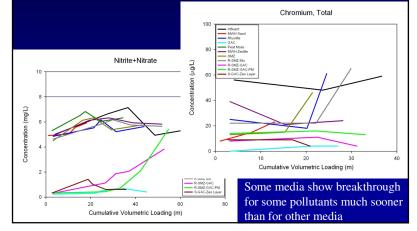
Current Kansas City Project using Green Infrastructure to reduce CSOs

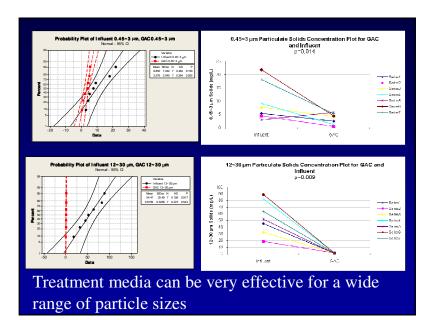

• Conventional CSO evaluations were conducted using XP_SWMM in order to identify the design storm for the demonstration area that will comply with the discharge permits.

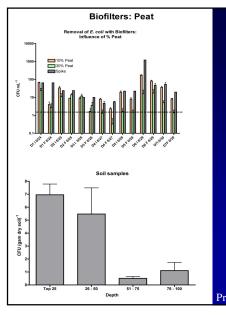



• XP_SWMM was also used by KCMO Water Services Department, Overflow Control Program, to examine different biofiltration and porous pavement locations and storage options in the test watershed.








6

Current evaluations of treatment media show that they can be used for treatment before infiltration, or as a soil amendment

Bacteria Retention in Biofiltration Soil/Peat Media Mixtures

• Need at least 30% peat for most effective *E. coli* reductions

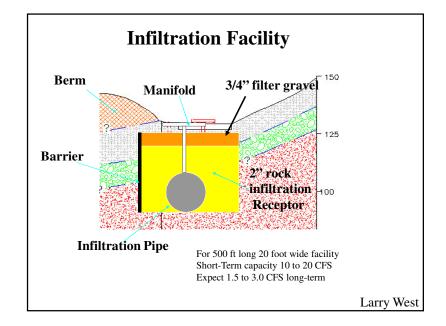
 Bacteria captured in top several inches of soil

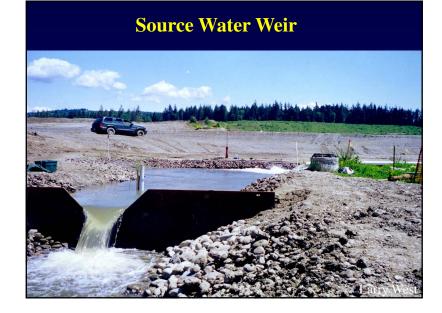
•Continued tests to evaluate other organic amendments and longer testing periods Preliminary data, Penn State - Harrisburg

Site Evaluation Tests

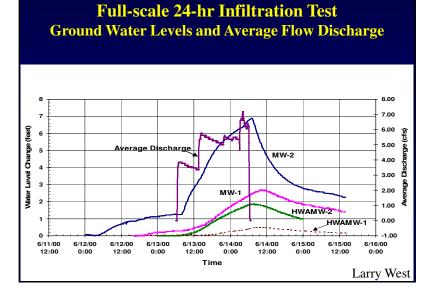
- Needed to characterize and quantify:
 - Site soil conditions (infiltration capacity, soil texture, soil density and bulk density, cation exchange capacity, sodium adsorption capacity, etc.)
 - Groundwater conditions (depth and movement, along with potential for groundwater mounding)

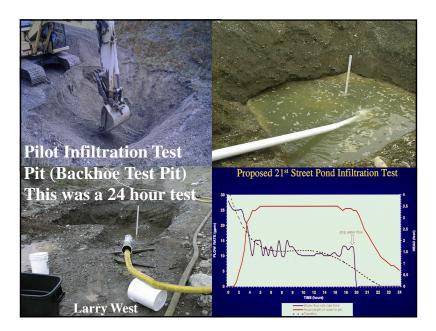
Site Evaluations Needed to Better Predict Bioretention Device


- Small-scale soil testing is suitable for small rain gardens, with suitable factors of safety and care in construction.
- Large-scale testing is needed if failure would result in serious consequences (such as if an integral part of a drainage system having little redundancy, or if critical environmental protection is needed).


Soil Texture	Saturation Water Content (%) (Porosity)	Available Soil Moisture (Field Capacity to Permanent Wilting Point) inches water/inches soil	Infiltration Rate (in/hr) assumed to be slightly compacted	CEC (cmol/kg or meq/100 gms)	Dry density (grams/cm ³), assumed to be slightly compacted
Coarse Sand and Gravel	32	0.04	40	1	1.6
Sandy Loams	40	0.13	1	8	1.6
Fine Sandy Loams	42	0.16	0.5	10	1.6
Silty Clays and Clays	55	0.155	0.05	30	1.6
Peat as amendment	78	0.54	3	300	0.15
Compost as amendment	61	0.60	3	15	0.25

Basic Characteristics for Soils and Materials Used in Biofilters





Number of Pits and Borings Needed

Infiltration Device	Tests Required	Minimum Number of Pits or Borings	Minimum Drill/Test Depth
Bioretention	Pits or borings; mounding	1 test/50 linear feet of device with a minimum of 2	5 feet or depth to limiting layer
Infiltration Basin	Pits or borings; mounding	2 pits per area; with 1 pit or boring for every 10,000 sq. ft.	Pits to 10 ft. or borings to 20 ft.

Site Characterization Costs typical unit costs (2000 costs)

- Test pits \$2,000/day (typically 4 to 8 per day)
- Grain-size determination \$100 each
- Test borings 25 ft deep ~ \$800 each
- Monitoring wells 25 ft deep ~ \$1,200 each
- Pilot infiltration test \$3,000 to \$6,000
- Double-ring infiltration test \$2,000 to \$4,000
- Ground water mounding analysis \$2,000 to \$5,000
- Conduct site characterization during geotech study

Table 7.1 Western Washington
Stormwater Management Manual

RECOMMENDED INFILTRATION RATES BASED ON USDA SOIL TEXTURAL CLASSIFICATION					
USDA Soil Classification	*Short—Term Infiltration Rate (in./hr)	Correction Factor, CF	Estimated Long-Term (Design) Infiltration Rate (in./hr)		
Clean sandy gravels and gravelly sands (i.e., 90% of the total soil sample is retained in the #10 sieve)	20	2	10**		
Sand	8	4	2***		
Loamy Sand	2	4	0.5		
Sandy Loam	1	4	0.25		
Loam	0.5	4	0.13		
* From WEF/ASCE, 1998					
	** Not recommended for treatment				
*** Refer to SSC-4 and SSC-6 for treatment acceptability criteria					

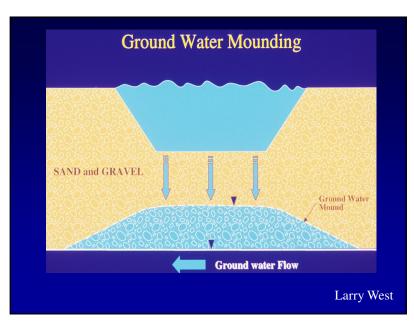
Design Infiltration Rates for Soil Textures Receiving Stormwater

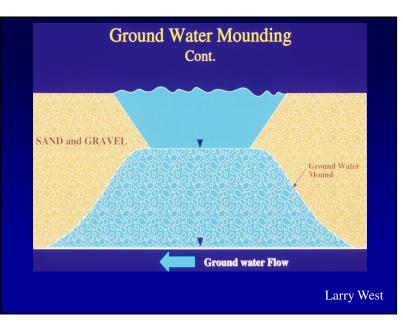
Soil Texture	Design Infiltration Rates Without Measurements, inches/ hour		
Sand	3.60		
Loamy Sand	1.63		
Sandy Loam	0.50		
Loam	0.24		
Silt Loam	0.13		
Clay	0.07		
New Wisconsin infiltration standards			

Infiltration Rate Calculations 21st Street Percolation Pond (WA) (Clean Sandy Gravel)

Summary of Flow Rates for 24-hour Infiltration Test						
Time	Size of	Water	Average	Cumulative	Estimated	
(hours)	Infiltration	Depth	Flow Rate	Discharge	Infiltration	
	Area (feet)	(feet)	(CFS)	(cubic feet)	Rate	
		()		(,	(inches/hour)	
5.5	205 X 15	0.3 to 0.7	3.7	91,000	52	
13.5	152 X 15	0.4 to 0.7	5.4	261,000	62	
3	255 X 15	0.4 to 0.7	6.6	74,000	75	
Comparison of Infiltration Rates						
Тур	e of Test	Infiltrat	ion Rate	Test	Method	
(inches/hour)						
Grain Size			20	USDA Textural		
2-hour Double Ring Infiltrometer 7 to 15		o 15	ASTM 3385			
24-hour Pilot Infiltration Test		32	to 65	DOE 2001, App. V-b		
Full	-scale Test	52	to 75	Larry West		

Long-Term Design Rates
21st Street Percolation Pond (Clean Sandy Gravel)

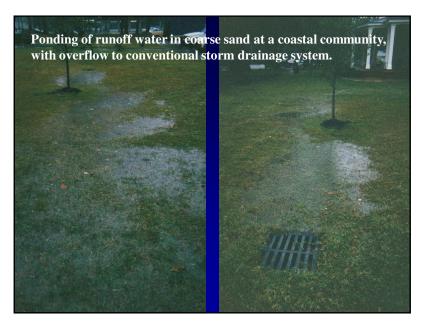

Issue	Correction Factor	Example	Actual Correction Factor
Site Variability # of Tests	1.5 - 6	Glacial Outwash	1.5
Maintenance	2 - 6	Large Buried Gallery	4
Pre-Treatment	2 - 6	Excellent 2 Ponds	2
Total Correction Factor	5.5 - 18		7.5
Therefore: Test Inf Design Infiltration			


Design Infiltration Rate Correction Factors for *In-situ* Field Testing

- Correction factors are typically used to reduce the field measured infiltration values to values that should be considered for design, reflecting expected long-term performance.
- These reduced rates consider:
 - site variability
 - long-term sustainability (reduced future rates due to clogging, mounding effects, etc.),
 - scaling issues when applying small scale test results to fullscale designs.

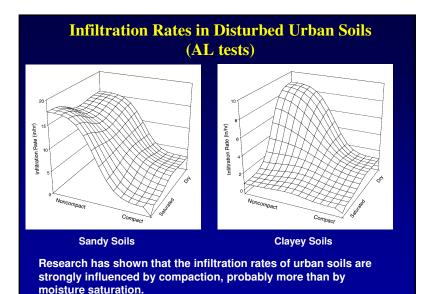
Correction Factors for *in-situ* Infiltration Results for Long-Term Design Rates

Issue	Correction Factor	Example	Actual Correction Factor	
Site Variability # of Tests	1.5 - 6	Mixed Alluvial Deposits	4	
Maintenance	2 - 6	Difficult - Buried Gallery	6	
Pre-Treatment	2 - 6	Excellent - 2 Ponds	2	
Total Correction Factor	5.5 - 18		12	
	Therefore: Test Infiltration Rate = 48 inches/hour Design Infiltration Rate = $48/12 = 4$ inches/hour			

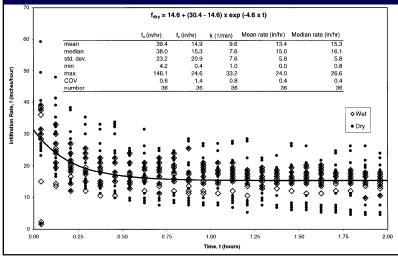


Ground Water Mounding "Rules of Thumb"

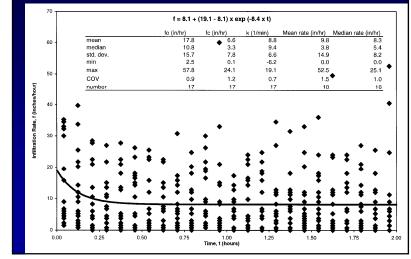
- Mounding reduces infiltration rate to saturated permeability of soil, often 2 to 3 orders of magnitude lower than infiltration rate.
- Long narrow system (i.e. trenches) don't mound as much as broad, square/round systems


Soil Compaction and Recovery of Infiltration Rates

- Typical site development dramatically alters soil density.
- This significantly reduces infiltration rates, especially if clays are present.
- Also hinders plant growth by reducing root penetration (New Jersey NRCS was one of the first groups that researched this problem).



Urban Soils Compacted during and after Development



Infiltration Laboratory Tests for Silty Loam Soil 4" Diameter Test Cylinder, 115 mm Depth 10 - Hand compacted Standard compaction procedure Modified compaction procedure 1 Infiltration Rate (in/hr) 0.1 - -0.01 0.001 0.1 10 100 1000 Time (hours) Pitt, et al. 2002

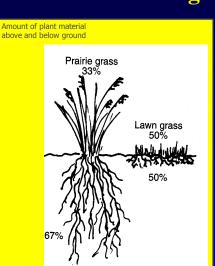
Infiltration Measurements for Noncompacted, Sandy Soils (Pitt, et al. 1999)

Infiltration Measurements for Dry-Noncompacted, Clayey Soils (Pitt, *et al.* 1999)

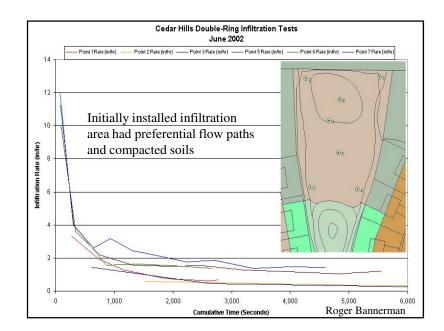
Soil Texture	Compaction Method	Dry Bulk Density (g/cc)	Long-term Average Infilt. Rate (in/hr)	Compaction, especially whe a small amount
Sandy	Hand	1.60	35	of clay is
Loam	Standard	1.65	9	present, causes
	Modified	1.99	1.5	a large loss in
Silt	Hand	1.50	1.3	infiltration
Loam	Standard	1.59	0.027	capacity. No
	Modified	1.69	0.0017	clay should be
Clay	Hand	1.50	0.29	allowed in
Loam	Standard	1.70	0.015	biofilter media
	Modified	1.91	<< 0.001	

Long-Term Sustainable Average Infiltration Rates

Types of Solutions to Infiltration Problems


- Use organic soil amendments to improve existing soil structure or restore soil structure after construction
- Remove soil layer with poor infiltration qualities
- Replace soil with improved soil mix
 Mix sand, organic matter, and native soil (if no clay)
- Use deep rooted plants or tilling to improve structure (but only under correct moisture conditions)
 - Chisel plow, deep tilling, native plants
- Pre-treat water
- Select different site

Typical household lawn aerators are ineffective in restoring infiltration capacity in compacted soils.



Natural processes work best to solve compaction, but can take decades.

- Value of Using Native Plants
 - Deeper roots absorbs more water and help loosen compacted soil
 - Uses no fertilizer
 - Uses little or no pesticides
 - Maintenance similar to other gardens
 - Does not require watering in droughts after establishment

Roger Bannerman

